SCALING TERRAFORM AS A
SERVICE

EFFICIENT INFRASTRUCTURE MANAGEMENT AT SCALE

SEAN DUXBURY

* Cloud Tech Lead at IAG

* Trying to keep user data from the darkweb

Linkedin

 Automates to avoid doing hard work

INITIAL SCALING ISSUES WITH TERRAFORM

L—infra/
* Poor redundancy. If the state file becomes corrupted everything is lost ‘_‘i‘booﬁtrap'tf
-— 1-org.
* Takes to long to run everything — 2-environments-dev.tf
~— 2-environments-prod.tf
* Issues with breaking up core infra into layers. — 3-networks-dev.tf
-— 3-networks-prod.tf
* Need to persist values from one layer to another L 4-team-a.tf

) L— 4-team-b.tf
* Need to manage dependencies of one layer to the next

INCOMES TERRAGRUNT

L—infra/

|—O bootstrap/
L— main.tf
* Benefits: |_ 1-org/
L— orgpolicy.tf
* Passing variables between steps |— 2-environments/
dev/
* Dependency tracking across layers I ||_ L vpc.tf
: : e : L— prod/
* Multiple state files to limit blast radius | I3
P | L— vpc.tf

|— 3-networks/
|— dev/

!
| L— network.tf
| '— prod/
| L— network.tf
L— 4-teams/
|—team a/

L— project.tf
'— team-b/

L— project.tf

TERRAGRUNT PAIN BEGINS

* Challenges:

As more teams onboarded, use of jinja templates to abstract boilerplate
This causes cognitive complexity to skyrocket

For TG to keep all the layers in memory as needed, cicd memory
requirements start exploding

Still takes a long time to run, so we enable parallelism on TG
TG starts slamming the cloud api’s and hits quota limits

TG is still single threaded so even in parallel mode runner cpu and memory
requirements go crazy

Still validating all infra every run. This ensures no drift, but means if there is
an issue with any one section then the process fails and no-one can push to
prod.

L—infra/

|— 0-bootstrap/

L— main.tf
|— 1-org/
L— orgpolicy.tf
2-environments/

|
| | L— vpc.tf
|
|

L— vpc.tf
|— 3-networks/
|— dev/

!
| L— network.tf
| '— prod/
| L— network.tf
L— 4-teams/
|— team-a/

L— project.tf
'— team-b/

L— project.tf

TRUE PARALLELISM — BACK TO TERRAFORM

Solution:

Each section must be able to run independently.
This required accessing outputs from previous
layers stored in a bucket

4-teams was split into a new repo

All the templates was hidden behind 1 single
“provisioner’ module. This means that new
teams only need to manage a single tf module.

Extra features are then loaded in as yaml config
in the same level

Now each team can run in a github actions
matrix job.

With a concurrency limits (avoid api quotas, and
multiple runs overwriting each other)

L—core infra/
|>— 0-bootstrap/

| L— main.tf
|»— 1-org/

| L— orgpolicy.tf
|»— 2-environments/

|-— dev/
|

|

| L— vpc.tf
| L— prod/

|

L— vpc.tf

I— 3-networks/
I— dev/
|

L— prod/

L— network.tf

L— network.tf

L—4-teams/
I— team-a/
L— project.tf
L— jam.yaml
L— firewall.yaml

|

|

|

|

L— team-b/
L— project.tf
L— jam.yaml
L— firewall.yaml

Cloud Bucket

0-bootstrap-outputs.json
1-org-outputs.json
2-environments-dev-outputs.json
2-environments-prod-outputs.json
3-networks-dev-outputs.json
3-networks-prod-outputs.json
4-team-a-outputs.json
4-team-b-outputs.json

SUMMARY

* Benefits:
* Runtime from ~45mins down to ~2 mins (for a single team project) L 4-teams/
Down to ~15mins for top to bottom |_ team-af
* Able to run on scaled out runners that don’t need specialty memory requirements. L— project.tf
(32gig+) L— jam.yaml

Which also saves $ L— firewall.yaml

* Afailure in one space is unseen by other runs |
L— team-b/

* Has now scaled to 250+ team projects and counting.)
L— project.tf
* More and more features are loaded into the front-door module. But this L— jam.yaml

complexity is hidden from the end users. L— firewall.yam|

* Separate repo for the 4-teams uses a less privileged SA to further limit blast radius.

* Considerations:

* There is now not true interlevel dependency. This can mean that changes at a
higher level will only be picked up on subsequent runs. Given things like vpc’s, and
networks don’t change id’s if ever this hasn’t cause much problems.

LESSONS LEARNED

* Don’t be afraid to “kill your baby”. Just because it was my idea doesn’t mean we should hang on to it.
* Keep iterating as you grow, something that works early on, might not work as you scale.

* Ripping terragrunt out requires a lot of manual state manipulation. (Moved blocks make this more
bearable)

* Keeping things independent allows for much better scaling

SEAN DUXBURY

Linkedin

	Slide 1: Scaling Terraform as a Service
	Slide 2: Sean Duxbury
	Slide 3: Initial Scaling issues with Terraform
	Slide 4: Incomes Terragrunt
	Slide 5: Terragrunt pain begins
	Slide 6: True Parallelism – Back to Terraform
	Slide 7: Summary
	Slide 8: Lessons Learned
	Slide 9: Sean Duxbury

